비소세포폐암 CT 영상 기반 ‘EGFR 돌연변이’ 예측 모델 개발
비소세포폐암에서 CT 영상 기반 딥러닝(AI)·라디오믹스를 활용한 ‘EGFR 유전자 돌연변이’ 예측 모델이 개발됐다. EGFR 유전자 돌연변이는 비소세포폐암에서 가장 흔히 발견되는 유전자 돌연변이다. 비소세포폐암은 폐암의 85% 이상을 차지하며, 비교적 서서히 진행되고 조기 발견 시 수술적 치료로 완치를 기대할 수 있다. 하지만 비소세포폐암 진단을 위한 ‘EGFR 유전자 돌연변이 검사’는 기술적인 어려움과 높은 비용 등의 문제가 있다. 이에 아주대온라인카지노추천 방사선종양학과 허재성 교수팀(김선화 연구원)은 이러한 문제를 극복하기 위해 비침습적이고 편리한 검사방법을 고안했다. 연구팀은 이번에 개발한 예측 모델은 비소세포폐암 환자 1,280명의 치료 전 CT 영상과 임상 데이터에 딥 러닝과 라디오믹스 기법을 적용한 것으로, 환자의 CT 영상에서 추출한 종양의 특징과 환자의 임상 정보와의 결합을 통해 환자의 EGFR 유전자 돌연변이 유무 확인이 가능하다고 밝혔다. 라디오믹스는 CT, MRI 등과 같은 의료 영상 데이터에서 추출한 대량의 양적 특징을 분석해 질병의 진단, 치료 계획 및 예후를 예측하는 분석 기법으로, 종양학의 경우 종양의 이질성을 특성화하기 위한 목적으로 활